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Abstract

In many practical applications, only noisy proxies for the true regressors are
available, which is commonly believed to induce an attenuation bias. In the
linear-in-means model, however, estimated peer effects might be inflated, po-
tentially leading to false positives. This paper shows that the asymptotic bias
depends on the interplay between individual characteristics and network links
and demonstrates how the network structure can facilitate identification with-
out the need for additional external information. Based on these identification
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1 Introduction

How reliable are peer effect estimates in published studies? Not very, according
to Josh Angrist’s critical assessment of the literature: “although correlation among
peers is a reliable descriptive fact, the scope for incorrect or misleading attributions
of causality in peer analysis is extraordinarily wide” (Angrist, 2014, p. 98). Ob-
taining credible causal estimates of peer effects presents several challenges to re-
searchers. To address peer endogeneity, they must find, or generate, exogenous vari-
ations in peer groups and develop models of peer selection.1 To address mismea-
surement in peers, they must collect detailed data on social networks and develop
models of peer effects with unknown or mismeasured peers.2 Building on Manski
(1993), the methodological literature on peer effects has grown alongside the ap-
plied literature. Yet despite methodological advances, guaranteeing the reliability
of peer effect estimates remains challenging. Addressing multiple endogeneity is-
sues without resolving them all still leaves researchers some distance away from a
causal interpretation.

This paper focuses on a critical yet understudied issue affecting the reliability
of peer effect estimates: measurement error in individual characteristics. Such er-
rors are a first-order empirical issue in survey-based (Bound, Brown, & Mathiowetz,
2001) and experimental work (Gillen, Snowberg, & Yariv, 2019). Errors-in-variables
are especially salient when individual-level covariates are measured with noise due
to survey misreporting, recall error, or imperfect measurement. In particular, self-
reported income and assets, as well as noisy proxies for ability such as test scores,
are commonly subject to classical measurement error.

Surprisingly, however, errors-in-variables remain a blind spot in the existing lit-
erature. In the applied literature on peer effects, problems raised by measurement
error on covariates are almost never discussed or addressed. The methodological
literature on this problem is scarce, and will be comprehensively reviewed below.
In short, this issue was identified by Moffitt (2001), highlighted by Angrist (2014),
and studied by Ammermueller and Pischke (2009); de Paula (2017); Feld and Zölitz
(2017). These five papers, however, only consider group interactions: agents are
partitioned in groups, such as classes within schools, and are affected by everyone
in their group and by no one outside it. In contrast, many recent studies of peer

1For studies of peer effects with random peers see, e.g., Sacerdote (2001); Carrell, Sacerdote, and
West (2013); Corno, La Ferrara, and Burns (2022). For econometric approaches combining models of
peer effects in networks with models of network formation see, e.g., Goldsmith-Pinkham and Imbens
(2013); Hsieh and Lee (2016); Griffith (2022b).

2The literature on peer effects in networks has grown fast in the past fifteen years, see Bramoullé,
Djebbari, and Fortin (2020) for a review. See, e.g., Griffith (2022a); Boucher and Houndetoungan
(2025); Lewbel, Qu, and Tang (2023); de Paula, Rasul, and Souza (2024) for models of peer effects
with imperfectly known peers.
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effects consider richer network interactions. Our paper fills this gap by analyzing
measurement error in network-based peer effects.

We provide the first analysis of measurement error when peer effects operate on
a network. We consider the benchmark linear-in-means model with contextual and
endogenous peer effects. An individual’s outcome is affected by their individual
characteristic, by the average characteristic of their peers, and by the average out-
come of their peers. A significant challenge arises when researchers only observe a
noisy proxy for the characteristic. Measurement error then occurs in both individual
and average peer characteristic, and errors in the two variables are related through
the structure of the model. The presence of related measurement errors on two re-
gressors makes the problem non-standard. We adopt a many-networks asymptotic
framework and consider econometric specifications with or without network fixed
effects. Our investigation revolves around two central questions. First, under what
conditions does measurement error cause asymptotic biases in peer effect estimates?
Second, what strategies can researchers employ to mitigate these biases? Our iden-
tification and estimation results highlight that true peer effects can generally be re-
covered without additional data.

Consistent with existing research, our findings indicate that classical measure-
ment error typically induces asymptotic bias in peer-effect estimates. Defying con-
ventional wisdom, these estimates are not necessarily attenuated toward zero.3 We
show that naive 2SLS estimates of peer effects, using mismeasured characteristics of
peers at distance two as an instrument for the average outcome of peers, converge
to a linear combination of the model’s parameters, which we refer to as smearing
or weight shifting. The magnitude and direction of the resulting asymptotic biases
critically depend on the interplay between individual characteristics and network
links. With measurement error, the estimated endogenous peer effect absorbs parts
of the individual effect and of the contextual peer effect, because the instrument
spuriously picks up variation in the true individual and average peer characteristic.
Similarly, the estimated contextual peer effect absorbs part of the individual effect,
because the average mismeasured peer characteristic partially proxies for the true in-
dividual characteristic. As a consequence, peer effect estimates may be significantly
different from zero even in the absence of true peer effects. These cross-loadings
vanish when characteristics and links are independent. In that case, the estimate of
the endogenous peer effect is asymptotically unbiased, while estimates of individual
and contextual peer effects display an asymptotic attenuation bias towards zero.

To build intuition we also study the bias in two simplified settings: a model with
3This conventional wisdom is based on the analysis of OLS estimates in the presence of one mis-

measured variable. It is well known that little can be said, in general, about the nature of the asymp-
totic bias in OLS or 2SLS estimates if there is measurement error in multiple variables (see, e.g., Levi,
1973; Greene, 2003, p. 86).
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contextual peer effects only and a model with endogenous peer effects only. In both
cases, smearing only arises when an individual’s characteristic is correlated with
their average peers’ characteristics. This correlation naturally emerges under ho-
mophily, which is widely documented in social networks (McPherson, Smith-Lovin,
& Cook, 2001). For example, it is common for college students to form friendships
with peers who have comparable academic abilities, similar socioeconomic back-
grounds, and similar levels of parental education. Measures of these characteristics
in survey data, such as Add Health, are notoriously noisy, suggesting a widespread
risk of biased peer effect estimates.4

In the first part of our analysis, we thus clarify how relationships between charac-
teristics and links give rise to an asymptotic bias in peer effect estimates. In the sec-
ond part, we demonstrate how these relationships can be leveraged to solve the prob-
lem. We show that the econometric model can be identified through conditional
mean and covariance restrictions, and without relying on external information.5

Identification depends on features of the measurement error. Under a weak as-
sumption that measurement error has mean-zero, we characterize when the model
is identified based on conditional mean restrictions (Theorem 1). We derive a nec-
essary and sufficient rank condition for identification, which combines the inter-
action matrix and the characteristic’s first moments. This strategy exploits poten-
tial associations between network positions and the individual characteristic: for
instance, when agents with more peers tend to have a higher value for the charac-
teristic. Identification from first moments is generic if the network structure is rich
enough (Proposition 2) and holds even when the measurement error is correlated
and heteroscedastic.

Imposing more structure on the measurement error opens up more possibilities
for identification. In a second step, we consider uncorrelated and homoscedastic
measurement errors. We characterize when the model is identified based on condi-
tional covariance restrictions (Theorem 2). This identification strategy takes advan-
tage of variations in correlations across observed characteristics between two net-
work positions. Overall, our results show that except in special cases, it is possible
to eliminate the asymptotic bias resulting from measurement error.

To do so in practice, we propose generalized method of moments (GMM) and
two-stage least squares (2SLS) estimators that are easy to implement. The GMM

4Although homophily disappears under complete randomization, it reappears in common quasi-
experimental setups, such as peer randomization within stratified groups. Under complete random-
ization, inflated estimates might still occur when individuals are drawn from a finite pool, giving rise
to the exclusion bias (e.g., see Caeyers & Fafchamps, 2023).

5External information, when available, can of course help better identify the parameters of inter-
est. A standard method to address measurement error is to exploit multiple independent measure-
ments of the noisy variable (Reiersøl, 1941; Schennach, 2007). This can easily be combined with our
internal identification strategies.
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approach uses more information and is generally more efficient, albeit introducing
non-linearities in the estimation procedure. Moments are directly built from the
means and covariance restrictions highlighted in our identification results. In con-
trast, 2SLS estimation is linear but typically less efficient. We propose a variety of
valid instruments, including network lags and network features. Monte Carlo sim-
ulations show that even modest measurement error can induce substantial bias in
naive 2SLS estimates of peer effects. They also confirm that our proposed estimators
are feasible and perform well in finite samples.

Related literature. Following the work of Manski (1993), the applied literature on
peer effects has grown extensively.6 Peer effects have been studied in a wide vari-
ety of settings, ranging from the classroom (Lavy & Schlosser, 2011), through labor
supply (Nicoletti, Salvanes, & Tominey, 2018), to consumption decisions (De Giorgi,
Frederiksen, & Pistaferri, 2019). When it is suspected that characteristics may suffer
from measurement error, our results and the tools proposed here can aid empirical
researchers to address this problem and to obtain consistent peer effect estimates.
Our analysis also clarifies the impact of randomization, a common strategy to miti-
gate peer endogeneity, on this bias.

Our analysis advances the sparse literature on measurement error and peer ef-
fects. A first strand of research concerns models with contextual peer effects. Moffitt
(2001) was the first to show formally that errors-in-variables can give rise to an ex-
pansion bias in peer effect estimates. He discusses the type of policy interventions
that can help address the problem. Angrist (2014) highlights the role played by
measurement error in generating inflated peer effect estimates. He illustrates in
Table 3 p.103 how adding noise to individual schooling leads to a large increase
in the estimate of average state schooling, in a regression on log wage. Exploiting
variation across classes within schools, Ammermueller and Pischke (2009) demon-
strate that the inclusion of school fixed effects considerably reduces the magnitude
of class peer effect estimates. This discrepancy is attributed to the interplay between
errors-in-variables and homophily: when sorting into classes is random but sort-
ing into schools is not, the inclusion of school fixed effects removes the school-level
homophily that gives rise to the expansion bias. Feld and Zölitz (2017) show that
when assignment to classes is completely random, errors-in-variables only lead to
an attenuation bias. For the same setting, Feld and Zölitz (2022) propose a simple
bias correction procedure based on multiple noisy measurements of the true char-
acteristic.

Another strand of research concerns models with endogenous peer effects and
6For a theoretical and econometric discussion on linear social interaction models see, e.g., Blume,

Brock, Durlauf, and Jayaraman (2015).
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noisy outcomes. de Paula (2017, p. 310) shows that the covariance between peers’
mismeasured outcomes identifies the endogenous peer effect in a linear-in-means
model. The result operates under the assumption of homoscedastic and uncorre-
lated disturbances in the outcome equation. In the context of a game with misclas-
sified binary actions, Lin and Hu (2024) develop a consistent estimator based on
repeated measurements.

Taking a broader perspective, we also contribute to the literature on measure-
ment error in dependent data. In a seminal contribution, Griliches and Hausman
(1986) show how the errors-in-variables problem can be overcome in the standard
linear panel data model without resorting to outside information. Our use of network-
lagged characteristics as instruments resembles their use of time-lagged variables.
More recently, Evdokimov and Zeleneev (2020) study errors-in-variables in general
nonlinear semiparametric panel or network data models with fixed effects. In this
more general setting, they show how the lagged values of covariates can still serve
as instruments to overcome the bias. However, they assume that the variances of
the measurement errors shrink with sample size, which is rather restrictive in our
context.

Our work is also related to the literature on errors-in-variables in linear models
through its use of higher moments. In early contributions, Koopmans (1937) and
Reiersøl (1950) recognized that this approach fails if the observables are jointly nor-
mal distributed. Cragg (1997), Dagenais and Dagenais (1997), and Erickson and
Whited (2002) therefore impose rank conditions on third and higher moments to
ensure identification. Klepper and Leamer (1984) show that the first and second
moments can be used to bound the coefficients. More recently, Ben-Moshe (2021)
provides necessary and sufficient conditions for identification when there is mea-
surement error in all variables. Alternatively, if some variables are known to be
perfectly measured, the latter can be used to construct instruments. Lewbel (1997,
2012) and Ben-Moshe, D’Haultfœuille, and Lewbel (2017) construct valid instru-
ments from perfectly measured variables without using additional outside informa-
tion. Our approach differs from this literature in that we do not impose functional
form assumptions on the distribution of measurement error, nor full independence
of measurement error from the other variables in the model. Moreover, our results
do not require the presence of perfectly measured covariates. We also allow for
conditional heteroscedasticity in outcomes, which might be important in empirical
applications.

Outline of the paper. The remainder of this paper is organized as follows. Sec-
tion 2 introduces the linear-in-means model and details the associated naive 2SLS
estimator. In Section 3, we show that in the presence of errors-in-variables, esti-
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mated peer effects exhibit asymptotic biases and analyze how this bias depends on
the interplay between characteristics and links. Section 4 provides formal conditions
under which the linear-in-means model with errors-in-variables is identified. Based
on these conditions, in Section 5, we propose GMM and 2SLS estimators that are
straightforward to implement. A Monte Carlo simulation illustrates the applicabil-
ity of our methods. Finally, Section 6 concludes. All proofs are in the Appendix.
The Appendix and the Online Appendix contain extensions and additional results.

2 Setup

A researcher observes data on outcomes, characteristics, and peers, and wants to
estimate the impact of peers’ characteristics and peers’ outcomes on individual out-
comes. We consider a data-generating process where a sequence {ys,xs, es,us,As}s=1,...,S

of S i.i.d. network observations is drawn from a joint distribution. Network s has
size Ns, ys is a Ns× 1 vector of outcomes, xs is a Ns× 1 vector of continuous charac-
teristics, es is a Ns × 1 vector of disturbances, us is a Ns × 1 vector of measurement
errors, and As is the Ns × Ns adjacency matrix of network s where (As)ij = 1 if
j is a peer of i and 0 otherwise. Networks may be directed, i.e. (As)ij may differ
from (As)ji. The researcher observes outcomes ys, networks As and mismeasured
characteristics x̃s = xs + us.

We assume that the size of networks Ns is uniformly bounded and consider
many-network asymptotics. The number of observations N =

∑S
s=1Ns → ∞ as

the number of networks S →∞. Throughout, all probability limits are with respect
toN and are assumed to exist and to be finite. Our setup resembles a cross-sectional
setting where the researcher observes a large number of small networks (e.g., peers
in classrooms or neighborhoods) at a single point in time. The assumption that out-
comes, characteristics, and networks are jointly determined is fairly general. This
notably covers setups with fixed networks as well as stochastic models of network
formation.

Given two random variables a and b, we let E(a) := plim 1
N

∑
s

∑
i asi denote the

expectation of a,V(a) := E[a2]−E[a]2 its variance, andC(a, b) := plim 1
N

∑
s

∑
i asibsi−

E(a)E(b) the covariance between a and b.

2.1 Linear-in-means model

The neighborhood of individual i, Nsi, is the set of i’s peers, j ∈ Nsi ⇐⇒ (As)ij = 1.
We assume that every individual has at least one peer, ∀i,Nsi 6= ∅. The degree of
individual i, di, is the number of i’s peers, di = |Nsi| =

∑
j(As)ij ≥ 1. Introduce the

interaction matrix, Gs, as (Gs)ij = (As)ij/di. This matrix is row-normalized — every
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row sums to one — and captures linear-in-means interactions.
As our baseline specification, we consider the standard linear-in-means model

of social interactions,

ysi = α + γxsi + δ
1

di

∑
j∈Nsi

xsj + β
1

di

∑
j∈Nsi

ysj + esi,

x̃si = xsi + usi,

in which individual i’s outcome depends on her individual characteristic (captured
by γ), her peers’ average characteristic (captured by δ), and her peers’ average out-
come (captured by β). We assume that |β| < 1 such that the reduced form is well-
defined. The disturbance in the outcome equation is assumed to satisfy the standard
conditional mean independence condition: i.e., E(esi | xs,Gs,us) = 0.

Measurement error arises because the researcher only observes a noisy proxy
x̃si for the true characteristic xsi. Stacking observations, this model can be written
compactly in matrix notation as

ys = α1 + γxs + δGsxs + βGsys + es, (1a)

x̃s = xs + us. (1b)

Regressors without measurement error can be partialled out first using the Frisch-
Waugh-Lovell (FWL) theorem.

To make the problem tractable, we impose some structure on the moments of the
measurement error. Throughout, we assume that its conditional mean is unrelated
to all other variables in the model and to the network structure.

Assumption 1. The measurement errors satisfy:

E(usi | xs,Gs, es) = 0.

Despite its mildness, Assumption 1 alone can yield identification from first mo-
ments; Theorem 1 states the exact conditions. To exploit second moments, we can
additionally restrict the conditional variance and pairwise covariance of the mea-
surement error.

Assumption 2. The measurement errors satisfy:

E
(
u2
si | xs,Gs, es

)
= σ2

u, E(usiusj | xs,Gs, es) = 0,∀i 6= j.

Importantly, we make no identifying assumptions on higher moments of the vari-
ables in the model, nor do we require full independence of the measurement error
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or the disturbance in the outcome equation. We also do not make distributional
assumptions such as normality.

In Appendix B we develop two extensions of the baseline model. First, we in-
corporate network fixed effects. This relaxes the conditional mean independence
assumption and is especially useful when unobserved factors cluster within net-
works. Second, we allow for measurement error in outcomes. In a linear-in-means
setting this is nontrivial, since outcomes enter both sides of the equation. We show
that, under mild conditions, our identification and estimation results extend to these
cases.

2.2 2SLS estimator

Because individuals’ outcomes appear on both sides of (1a), OLS estimation delivers
biased estimates. Researchers therefore typically resort to a 2SLS estimator where
the endogenous average outcomes of peers are instrumented with an instrumental
variable z. A popular, model-based choice are the characteristics of peers at distance
two (Bramoullé, Djebbari, & Fortin, 2009).

Define y := vec(y1,y2, . . . ,yS), x̃ := vec(x̃1, x̃2, . . . , x̃S), e := vec(e1, e2, . . . , eS),
u := vec(u1,u2 , . . . ,uS), z := vec(z1, z2, . . . , zS), and let G := diag(G1,G2, . . . ,GS)

be the block-diagonal matrix that contains the interaction matrices. The naive 2SLS
estimator for the baseline specification can then be written as[

α̂IV γ̂IV δ̂IV β̂IV
]ᵀ

:= (ZᵀX)−1 Zᵀy, (2)

where X :=
[
1 x̃ Gx̃ Gy

]
and Z :=

[
1 x̃ Gx̃ z

]
.

In the presence of measurement error, and as shown below, the 2SLS estima-
tor (2) generally exhibits an asymptotic bias. The reason is that both the individual
observed characteristic and average observed characteristics of peers are endoge-
nous. To see why, substitute Equation (1b) in (1a), which gives that

ys = α1 + γx̃s + δGsx̃s + βGsys + es − γus − δGsus︸ ︷︷ ︸
:=ηs

. (3)

The endogeneity problem arises because individual and peer characteristics are typ-
ically correlated with the composite error term: i.e., C(x̃, η) 6= 0 and C(Gx̃, η) 6= 0

if γ, δ 6= 0. At the core of the problem is an underidentification problem: there are
three endogenous variables, but only one instrumental variable.
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3 Asymptotic bias

We study the asymptotic bias in peer effect estimates in the presence of errors-in-
variables. Our results highlight the role of the interplay between characteristics and
links. We first present results for the general case, and then build intuition by focus-
ing on two special cases that are relevant in applied work.

The general case. We derive analytical expressions for the probability limits of the
naive 2SLS estimates of the individual effect γ̂IV , the contextual peer effect δ̂IV , and
the endogenous peer effect β̂IV . To focus the discussion, throughout this section we
take the instrument z to be the average characteristics of peers at distance two.7 By
Assumptions 1 and 2, z is uncorrelated with measurement error at distance zero and
one, C(z, u) = C(z,Gu) = 0. In addition, C(z, e) = 0, so the instrument is valid (for
a formal discussion, see Proposition 5 in Section 5.2).

By substituting Equations (1a) and (1b) in (2), and applying the Frisch-Waugh-
Lovell (FWL) theorem to partial out the intercept, we express the asymptotic biases
of γ̂IV , δ̂IV , and β̂IV in terms of the true model parameters and the matrices S and
Σ, which collect (co)variances in characteristics and errors.

Lemma 1. Suppose that Assumptions 1 and 2 hold and that the matrix (S+Σ) is invertible,
where

S :=

 V(x) C(x,Gx) C(x,Gy)

C(Gx, x) V(Gx) C(Gx,Gy)

C(z, x) C(z,Gx) C(z,Gy)

 , Σ :=

σ
2
u 0 0

0 h0σ
2
u 0

0 0 0

 ,
and h0 := 1

N

∑
s

∑
i

1
dsi

. Then the IV estimates of γ, δ, β converge in probability to

plim

γ̂
IV

δ̂IV

β̂IV

 = (S + Σ)−1S︸ ︷︷ ︸
:=M

γδ
β

 .
The matrix Σ has a specific structure. First, under Assumption 2, measurement

error is homoscedastic and uncorrelated across peers, so thatV(u) = σ2
u andC(u,Gu) =

0. Moreover, the measurement error in the instrument is uncorrelated with the mea-
surement error in both the individual characteristic and the average peer character-
istic. Second, due to the averaging across peers, measurement error in the average

7The use of characteristics from peers at distance two is common practice in applied work on peer
effects (see, e.g., Patacchini & Venanzoni, 2014; Nicoletti et al., 2018; De Giorgi et al., 2019). Note
that the instrumentG2x̃, which is valid in the absence of measurement error (Bramoullé et al., 2009)
would introduce an additional source of bias. It is not valid in the presence of error-in-variables,
since it is also built from links at distances zero and one and hence C(z, η) 6= 0.
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peer characteristic has smaller variance than measurement error in the individual
characteristic. In particular, we have V(Gu) = h0σ

2
u, where h0 ≤ 1 is the arithmetic

mean of the inverse degrees in the network. This network statistic captures the over-
all extent of the averaging across peers.

Note that in the absence of measurement error, Σ = 0 and M = I, so there is
no asymptotic bias, as expected. In many settings, the presence of measurement
error entails an attenuation bias toward zero, such that estimates are smaller than
the corresponding true model parameters (e.g., see Wansbeek & Meijer, 2000 for a
detailed discussion). As argued above, however, this need not hold for the peer-
effect coefficients in the linear-in-means model.

In the presence of measurement error, Lemma 1 implies that each estimate is
a linear combination of the three true parameters. The off-diagonal elements of
M capture whether the (biased) estimate of one effect is picking up part of an-
other effect. This phenomenon is referred to as smearing or weight shifting in the
measurement-error literature. It can give rise to an expansion bias, falsely suggest-
ing the presence of peer effects when there are none. For example, if M31 6= 0, then
β̂IV inherits a smearing component from γ (and if M32 6= 0 from δ). As a result,
researchers may falsely detect endogenous peer effects even when β = 0, provided
that γ 6= 0 or δ 6= 0.

We study general properties of the probability limits in the next result. We find
it useful to work with the following block decomposition of matrices S and Σ:

S =

[
S11 s12

s21 s22

]
, Σ =

[
Σ11 0

0 0

]
,

where S11 and Σ11 are 2 × 2 matrices and s12 and sᵀ21 are 2 × 1 vectors. Define K as
the Schur complement of s22 in S + Σ, i.e., K := S11 + Σ11 − 1

s22
s12s21.

Proposition 1. Suppose that Assumptions 1 and 2 hold, that the matrix (S+Σ) is invertible,
and that s22 6= 0. Then the IV estimates of γ, δ, β converge in probability to

plim

γ̂
IV

δ̂IV

β̂IV

 =

[
I−K−1Σ11 0
1
s22

s21K
−1Σ11 1

]γδ
β

 .
When characteristics are independent of links, this further simplifies to

plim

γ̂
IV

δ̂IV

β̂IV

 =


V(x)

V(x)+σ2
u

0 0

0 V(Gx)
V(Gx)+h0σ2

u
0

0 0 1


γδ
β

 .
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Proposition 1 shows that, under classical measurement error, peer effect esti-
mates are generally biased due to smearing. The estimated contextual peer effect
δ̂IV picks up part of the individual effect, and the estimated endogenous peer effect
β̂IV picks up parts of the individual and contextual peer effects. Interestingly, there
is no smearing in the opposite direction: γ̂IV and δ̂IV do not pick up any part of the
endogenous peer effect.

These smearing effects depend in complex ways on the relationship between
characteristics and network structure and are therefore difficult to sign analytically.
Indeed, we show below that even in the simpler model without contextual peer ef-
fects (i.e., with only endogenous peer effects), the smearing term can be negative
or positive. Nevertheless, even in this general setup we can make some qualitative
observations. As shown in Appendix A.2, the probability limit of βIV can be written
as

plim β̂IV =
σ2
uϕz,x̃
DIV

1

γ +
h0σ

2
uϕz,Gx̃
DIV

1

δ + β,

whereDIV
1 = C(z,Gy)−ϕz,x̃C(x,Gy)−ϕz,Gx̃C(Gx,Gy), and whereϕz,x̃ andϕz,Gx̃ de-

note the population regression coefficients of x̃ and Gx̃, respectively, from regress-
ing z on a constant, x̃, and Gx̃. This representation shows that the smearing of γ
and δ into βIV is governed by the extent to which the observed individual and av-
erage peer characteristics are correlated with the instrument. In particular, γ and
δ do not smear into β̂IV when ϕz,x̃ = 0 and ϕz,Gx̃ = 0, respectively.8 Intuitively,
this highlights that correlation between the instrument and the individual and peer
characteristics—which can naturally arise under homophily—is a key driver of the
asymptotic bias in β̂IV . With measurement error, the estimated endogenous peer ef-
fect absorbs parts of the individual effect and of the contextual peer effect, because
the instrument spuriously picks up variation in the true individual and average peer
characteristic.

In addition, the asymptotic bias in β̂IV tends to decrease with instrument strength,
as captured by C(z,Gy). Ceteris paribus, stronger instruments reduce the noise-to-
signal ratio and therefore mitigate the bias induced by errors-in-variables. This sug-
gests that error-in-variables may exacerbate the consequences of weak instruments.

Proposition 1 also specializes the result to the case in which characteristics are
independent of links, which is particularly relevant in experimental settings. In this
case, the smearing effects disappear and γ̂IV and δ̂IV exhibit attenuation bias. Inter-
estingly, β̂IV remains consistent.

8In Appendix A.2, we show that C(z, x) = C(z,Gx) = 0 implies ϕz,x̃ = ϕz,Gx̃ = 0.
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Two particular cases. To build intuition and further illustrate these effects, we next
discuss two particular cases. The linear-in-means model accommodates two chan-
nels of peer effects, but applied work often estimates simpler variants that include
only one channel.9 This naturally raises the question of whether the insights under-
lying Proposition 1 can be sharpened in these simpler models.

Suppose first that there is no endogenous peer effect, i.e., β = 0, and that this restric-
tion is known by the researcher. In Online Appendix O.A.1, we derive the analogue
of Proposition 1 for the restricted model estimated by OLS. We find that even in this
case, δ̂OLS generally exhibits bias in the direction of γ. More precisely,

plim δ̂OLS =
σ2
uC(x,Gx)

DOLS
γ +

V(x)V(Gx)− C(x,Gx)2 + σ2
uV(Gx)

DOLS
δ, (5)

where DOLS := V(x)V(Gx)− C(x,Gx)2 + h0σ
2
uV(x) + σ2

uV(Gx) + h0σ
4
u. Hence, esti-

mates of contextual peer effects can exhibit asymptotic bias even when endogenous
peer effects are absent.

In contrast to the general case, the smearing term can be signed here using the
sign of C(x,Gx), since DOLS > 0. In particular, expansion bias is positive when
individual characteristics are positively correlated with the average characteristic
of their peers. Such positive correlation arises naturally under homophily, when
similar agents are more likely to be connected. The magnitude of the expansion bias
is also decreasing in the inverse average degree h0.

The mechanism underlying the bias is as follows. When C(x,Gx) > 0, δ̂OLS will
spuriously pick-up part of the variation in x, and this tendency is more pronounced
when the measurement error in Gx̃ is smaller. This is because Gx̃ then becomes a
better proxy for x. Since Gx̃ averages across peers, Lemma 1 implies that the vari-
ance of its measurement error is proportional to h0. Hence, a lower h0 implies less
measurement error and therefore more smearing: a larger share of the individual
effect γ is loaded onto the estimated contextual peer effect δ̂OLS .

Conversely, suppose next that there is no contextual peer effect, i.e., δ = 0, and that,
again, this restriction is known by the researcher. In this case, peers’ characteristics
Gx̃ provide a natural instrument for peers’ outcomes Gy. Computations in Online
Appendix O.A.2 show that under 2SLS estimation, β̂IV has an asymptotic bias in the
direction of γ:

plim β̂IV =
σ2
uϕGx̃,x̃
DIV

2

γ + β, (6)

where DIV
2 := C(Gx,Gy) − ϕGx̃,x̃C(x,Gy), and where ϕGx̃,x̃ = C(x,Gx)

V(x)+σ2
u

denotes the

9Models with contextual peer effects only are estimated, for instance, in Carrell, Fullerton, and
West (2009); Lavy and Schlosser (2011). Models with endogenous peer effects only are estimated in
Gaviria and Raphael (2001); Trogdon, Nonnemaker, and Pais (2008); Paul and Nath (2024).
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population regression coefficient on x̃ from regressingGx̃ on a constant and x̃. Hence,
estimates of endogenous peer effects can be asymptotically biased even when con-
textual peer effects are absent.

The smearing term is non-zero only when C(x,Gx) 6= 0. As in the general
case, the extent of smearing is driven by correlation between the instrument and
the observed characteristics. The asymptotic bias tends to decrease with instrument
strength, as captured by C(Gx,Gy).

When both types of peer effects are present, these sources of bias get combined,
leading to the asymptotic biases highlighted in Proposition 1.

4 Identification

We now consider the identification of the linear-in-means model of peer effects, ac-
counting for errors-in-variables. Our aim is to establish the conditions required for
identification in this model, both necessary and sufficient. We demonstrate that the
model exhibits generic identification properties, even in the absence of external in-
formation. In particular, inherent features of the network can serve as a valuable tool
for mitigating measurement error and enabling the identification of peer effects.

We propose two complementary approaches to identify the parameters of inter-
est (α, β, γ, δ, σ2

u), depending on how much structure is imposed on measurement
error. The first strategy is based on conditional mean restrictions and only relies on
Assumption 1 (mean-zero). It identifies (α, β, γ, δ) by exploiting variation in average
individual characteristics across network positions. This strategy is valid when, for
instance, agents with more friends tend to have a higher value for the characteristic.
The second identification strategy is based on conditional covariance restrictions and
relies on Assumptions 1 and 2 (homoscedasticity and uncorrelatedness). It identi-
fies (β, γ, δ, σ2

u) by exploiting variation in covariances of individual characteristics
across pairs of network positions.10 We maintain the weak assumptions on the dis-
turbance term in Equation (1a) and on the measurement error in Equation (1b), and
therefore focus exclusively on mean and covariance restrictions. Researchers willing
to impose more structure could exploit additional moments for identification.11

For identification purposes, we form a single pooled interaction matrix G0 of
dimensions N0 × N0 by placing all networks in the support on the diagonal of a
block–diagonal matrix. The setup is feasible because bounded network size implies
a finite support of interaction matrices, even as we observe arbitrarily many net-

10In the absence of information on social connections, de Paula et al. (2024) implicitly leverage
similar covariances to identify both social interactions and peer effects. In contrast to their approach,
our results do not require panel data.

11For example, Rose (2017) identifies a linear-in-means model from second moments of outcomes
under homoscedastic disturbances.
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works. We likewise stack observed outcomes and characteristics into conformable
vectors y0 and x̃0.

We say that two nodes i0 and j0 have symmetric network positions if they belong
to the same network A in G0 and if there exists a permutation of nodes’ labels, π, that
maps one node into another while preserving links. Formally, π(i0) = j0, π(j0) = i0

and for all pairs of network nodes k0, l0, Aπ(k0)π(l0) = Ak0l0 . In this case, i0 and j0

are undistinguishable and hence have the same conditional distribution of charac-
teristics and outcomes. We then obtain the number of unique network positions by
counting symmetric positions only once. For instance, a star with N0 nodes has two
unique positions, center and periphery, while a circle with N0 nodes has a unique
network position. By contrast, all positions are generally unique in a large complex
network.

4.1 Mean restrictions

To derive the conditional mean restrictions, note that using Equation (3) the reduced
form can be written as

ys = (I− βGs)
−1[α1 + (γI + δGs)x̃ + ηs].

Stacking networks, taking expectations on both sides, and using Assumption 1, we
obtain

E[y0 | G0] = (I− βG0)−1[α1 + (γI + δG0)m]︸ ︷︷ ︸
:=r(m,G0;θ1)

, (7)

where m := E(x̃0 | G0) collects the expected characteristic by network position
and θ1 := (α, β, γ, δ). Since there are N0 network positions in total, this yields a
nonlinear system of N0 equations in four unknowns. Except for knife-edge cases,
most networks should then deliver a substantial degree of overidentification. This
identification strategy exploits variation in individual characteristics across network
positions. By taking expectations by network position, we need no restriction on
the covariance structure of measurement error in the network, and peers can make
correlated mistakes.

We next derive the precise identification conditions. Say that the model is iden-
tified from conditional mean restrictions if there do not exist θ1, θ′1 with θ1 6= θ′1 such
that r(m,G0;θ1) = r(m,G0;θ′1). We require βγ + δ 6= 0; if this condition fails, it
corresponds to a knife-edge case in which contextual and endogenous peer effects
exactly offset one another (Bramoullé et al., 2009).

Theorem 1. Suppose that Assumption 1 holds and that βγ + δ 6= 0. The parameters
α, β, γ, δ are identified from conditional mean restrictions if and only if the vectors 1, m,

14



G0m, G2
0m are linearly independent.

Identification based on mean restrictions requires the matrix [1,m,G0m,G2
0m] to

have full rank, that is, rank four. This condition captures restrictions on the network
structure and on how the characteristic varies with network position. Identification
can only hold if there is enough variation in conditional expectations mi0 . Identifi-
cation fails to hold, for instance, with homogeneous marginals, when for every pair
i0, j0, xi0 and xj0 have the same distributions. In that case, mi0 = mj0 and m = λ1

for some scalar λ. It also fails to hold when the network has less than four unique
network positions. This happens, for instance, if every network As is a star with
N0 nodes (two unique network positions) or if every network As is a line with five
nodes (three unique network positions).

More generally, this rank condition is stronger than the condition in Bramoullé
et al. (2009), who show identification in the linear-in-means model without mea-
surement error when I, G0, G2

0 are linearly independent. Indeed, suppose that
identification fails to hold in the absence of measurement error. Then there exist
λ0, λ1, λ2 not all equal to zero such that λ0I + λ1G0 + λ2G

2
0 = 0. This implies that

λ0m + λ1G0m + λ2G
2
0m = 0 and hence the vectors 1, m, G0m, G2

0m are linearly
dependent. Identification conditions are naturally more demanding with measure-
ment error than without.

When there is variation in conditional expectations, identification is related to
the spectral properties of the interaction matrix G0. More precisely, suppose that
identification fails to hold. There are two cases. Either there exist λ0, λ1 such that
G0m = λ01 +λ1m. Then if λ1 6= 1, we can see that m + λ0

λ1−1
1 is an eigenvector of G0

for the eigenvalue λ1. Or there exist λ0, λ1, λ2 such that G2
0m = λ01 +λ1m +λ2G0m.

In that case, and if λ1 + λ2 6= 1, we can check that m + λ0
λ1+λ2−1

1 is an eigenvector of
the matrix G2

0 − λ2G0 for the eigenvalue λ1. In either case, the vector of characteris-
tic expectations conditional of network positions must be precisely related to some
eigenvector of a simple polynomial function of G0.12

This suggests that non-identification based on mean restrictions is uncommon.
We next derive a sufficient condition for generic identification. The following propo-
sition shows that, if the network is sufficiently rich, the set of mean vectors m for
which identification fails is negligible. To formally define what it means for identi-
fication to be generic, we must first account for the fact that two nodes i and j with
symmetric network positions are undistinguishable, and notably satisfy mi = mj .

12In graph theory, it is well known that structural symmetries in a network are often associated
with higher algebraic multiplicities of the eigenvalues of its interaction matrix (Biggs, 1993). At one
extreme lies the complete graph, whose interaction matrix has an eigenvalue with algebraic multi-
plicity N0 − 1. At the other extreme, Erdős–Rényi random graphs typically exhibit simple spectra
with high probability. Informally, the more “asymmetric” the network, the less likely it is that an
arbitrary vector is an eigenvector of the associated interaction matrix.
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4

5

Figure 1: A 5-node network

Denote by Ň0 the number of unique network positions, by m̌ the Ň0×1 vector of con-
ditional expectations and by Ǧ0 the Ň0× Ň0 interaction matrix defined over unique
network positions.13 Note that Equation (7) and Theorem 1 still hold when replac-
ing m by m̌ and G0 by Ǧ0.

Formally, for a fixed G0, we say that the model is generically identified from condi-
tional mean conditions if the set{

m̌ ∈ RŇ0 : ∃ θ1 6= θ′1 =⇒ r(m̌, Ǧ0;θ1) = r(m̌, Ǧ0;θ′1)
}

has Lebesgue measure zero. Our definition of generic identification is conceptually
related to the order (or rank) conditions in systems of linear equations being gener-
ically satisfied (Lewbel, 2019, 886). Note, however, that non-generic cases may still
be of substantive interest.

Proposition 2. Suppose that Assumption 1 holds and that βγ + δ 6= 0. If Ǧ0 has at least
4 distinct eigenvalues, the parameters α, β, γ, δ are generically identified from conditional
mean restrictions.

To illustrate Theorem 1 and Proposition 2, suppose that a researcher observes
many networks of five nodes with the structure depicted in Figure 1. Here, posi-
tions 4 and 5 are symmetric, and hence the network structure has Ň0 = 4 unique
network positions. Parameters are identified from conditional mean restrictions if

13m̌ is obtained fromm by keeping a unique entry for each unique network position. Ǧ0 is obtained
from G0 by keeping a unique row for each unique network position and by summing the columns
over symmetric network positions.
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the following system of linear equations in (α, β, γ, δ) has a unique solution:

y1 = α + γm1 + δm2 + βy2,

y2 = α + γm2 + δ

(
1

2
m1 +

1

2
m3

)
+ β

(
1

2
y1 +

1

2
y3

)
,

y3 = α + γm3 + δ

(
1

3
m2 +

1

3
m4 +

1

3
m5

)
+ β

(
1

3
y2 +

1

3
y4 +

1

3
y5

)
,

y4 = α + γm4 + δ

(
1

2
m3 +

1

2
m5

)
+ β

(
1

2
y3 +

1

2
y5

)
,

y5 = α + γm5 + δ

(
1

2
m3 +

1

2
m4

)
+ β

(
1

2
y3 +

1

2
y4

)
,

where here yi0 denote expected outcome conditional on position i0. By Theorem 1
parameters are identified when βγ+δ 6= 0 if and only if 1, m, G0m, G2

0m are linearly
independent. Here,

G0 =


0 1 0 0 0
1
2

0 1
2

0 0

0 1
3

0 1
3

1
3

0 0 1
2

0 1
2

0 0 1
2

1
2

0

 , and G2
0 =



1
2

0 1
2

0 0

0 2
3

0 1
6

1
6

1
6

0 1
2

1
6

1
6

0 1
6

1
4

5
12

1
6

0 1
6

1
4

1
6

5
12

 ,

and identification from mean restrictions holds if and only if the following matrix
has rank four:

[1,m,G0m,G2
0m] =


1 m1 m2

1
2
m1 + 1

2
m3

1 m2
1
2
m1 + 1

2
m3

2
3
m2 + 1

6
m4 + 1

6
m5

1 m3
1
3
m2 + 1

3
m4 + 1

3
m5

1
6
m1 + 1

2
m3 + 1

6
m4 + 1

6
m5

1 m4
1
2
m3 + 1

2
m5

1
6
m2 + 1

4
m3 + 5

12
m4 + 1

6
m5

1 m5
1
2
m3 + 1

2
m4

1
6
m2 + 1

4
m3 + 1

6
m4 + 5

12
m5

 .

Then, to apply Proposition 2, we merge the two symmetric positions 4 and 5. The
interaction matrix defined over unique positions is now

Ǧ0 =


0 1 0 0
1
2

0 1
2

0

0 1
3

0 2
3

0 0 1
2

1
2

 .

We can easily check that this matrix has four distinct eigenvalues. By Proposition 2,
we know that for this network structure, the set of m̌ ∈ R4 for which identification
fails has Lebesgue measure zero.
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4.2 Covariance restrictions

Another source of identification is provided by conditional covariance restrictions.
Consider C(y0, x̃0 | G0) the matrix that collects over all pairs (i0, j0) of network
positions the covariance between outcome at position i0 and the observed charac-
teristic at position j0. Denote by C := V(x̃0 | G0) the matrix of covariances of
observed characteristics between network positions. Observe that under Assump-
tion 1, V(x̃0 | G0) = V(x0 | G0) + V(u | G0). If one is willing to additionally impose
Assumption 2, V(u | G0) = σ2

uI. Replacing y0 by its reduced-form expression gives

C(y0, x̃0 | G0) = (I− βG0)−1(γI + δG0)(C− σ2
uI)︸ ︷︷ ︸

:=R(C,G0;θ2)

, (8)

where θ2 := (β, γ, δ, σ2
u). This yields a nonlinear system of N2

0 equations in four un-
knowns. As with mean restrictions, the model should then be substantially overi-
dentified for most networks. This identification strategy exploits variation in covari-
ances between observed characteristic across pairs of network positions.

We derive the exact identification conditions in the following result. We say the
model is identified from conditional covariance restrictions if there do not exist θ2, θ′2
with θ2 6= θ′2 such that R(C,G0;θ2) = R(C,G0;θ′2).

Theorem 2. Suppose that Assumptions 1 and 2 hold and that βγ + δ 6= 0. The parameters
β, γ, δ, σ2

u are identified from conditional covariance restrictions if and only if the matrices I,
G0, G2

0, C, G0C, G2
0C are linearly independent.

Identification based on covariance restrictions only holds if there is enough vari-
ation in characteristic covariance across network positions pairs. Indeed, Theorem 2
implies that identification fails when correlation in characteristics across pairs of net-
work positions is constant. To see why, assume thatV(xi0) = σ2

x andC(xi0 , xj0) = ρσ2
x

for every pair of positions i0 6= j0 who belong to the same network structure in
G0. Let J0 be a block-diagonal matrix where blocks correspond to networks in G0

and each block is a matrix of ones. Then, C = ((1 − ρ)σ2
x + σ2

u)I + ρσ2
xJ0. And

note that since G0 is block-row stochastic, G0J0 = J0. This implies that G0C =

((1− ρ)σ2
x +σ2

u)G0 + ρσ2
xJ0 = C + ((1− ρ)σ2

x +σ2
u)(G0− I). The linear independence

condition of Theorem 2 is not satisfied, and hence the parameters are not identified
from covariance restrictions.

By contrast, let us next illustrate how the identification conditions operate when
characteristic covariance varies across pairs of network positions. Define, as usual,
network distance d(i0, j0) between two positions i0, j0 as the number of links in a short-
est path between them and diameter as the largest finite network distance. Consider
a setup where covariance between individuals’ characteristics varies with network
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distance, up to distance three, and where the diameter of the network is greater
than or equal to five. Thus, V(xi0) = σ2

x, C(xi0 , xj0) = ρ1σ
2
x if d(i0, j0) = 1, ρ2σ

2
x if

d(i0, j0) = 2, ρ3σ
2
x if d(i0, j0) = 3 and 0 if d(i0, j0) ≥ 4 with ρ1, ρ2, ρ3 > 0. In that

case, we can show that the linear independence condition of Theorem 2 is satisfied.
Indeed, there exists a pair of positions i0, j0 such that d(i0, j0) = 5. For this pair, we
see that (G2

0C)i0j0 > 0 while (G0)i0j0 = (G2
0)i0j0 = Ci0j0 = (G0C)i0j0 = 0. Therefore,

the matrix G2
0C cannot be expressed as a linear combination of I, G0, G2

0, C, G0C.
Repeating the argument with a pair at distance four, we see that G0C is not a linear
combination of I, G0, G2

0, C, and with a pair a distance three, that C is not a linear
combination of I, G0, G2

0. Therefore, the matrices I, G0, G2
0, C, G0C, G2

0C are lin-
early independent and hence parameters (β, γ, δ, σ2

u) are identified from covariance
restrictions.

5 Estimation

While dependencies between characteristics and links may generate asymptotic bias,
it simultaneously offers a valuable source of information that can be harnessed to
develop consistent estimators for the parameters of interest. We next introduce
straightforward and practical GMM and 2SLS estimators, directly built upon the
conditional mean and covariance restrictions highlighted in the previous section.14

15 Importantly, these estimators are applicable to setups with fixed as well as stochas-
tic networks.

5.1 GMM estimators

Fixed networks. First consider the case where a fixed interaction matrix G is ob-
served repeatedly by the analyst. It is applicable, for instance, in experimental setups
where the researcher can control the network.

We first introduce a GMM estimator based on the conditional mean restrictions
in Equation (7).16 The associated conditional moment conditions are E[v1,s(θ1,G) |
G] = 0, where

v1,s(θ1,G) := (I− βG)ys − α1− (γI + δG)x̃s.

14While the GMM approach can yield more efficient parameter estimates, it does introduce non-
linearity into the estimation procedure. Appendix B.1 discusses how to apply the GMM estimators
in the presence of network-specific fixed effects.

15In practice, researchers are advised to test for weak moments and weak instruments, since weak
identification can lead to poor finite-sample properties and unreliable conventional inference.

16We construct the moment conditions from the structural rather than the reduced form of the model.
These conditions are computationally more efficient because they avoid matrix inversion. Neverthe-
less, the two approaches are equivalent in the population and asymptotically equivalent when using
the optimal weighting matrix.
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Proposition 3. Suppose that Assumption 1 holds, that βγ + δ 6= 0, and that the condition
in Theorem 1 is satisfied. Under standard regularity conditions (see Appendix A.6), the
GMM estimator

θ̂
GMM

1 := arg min
θ1

(
1

S

∑
s

v1,s(θ1,G)

)ᵀ

Ω1

(
1

S

∑
s

v1,s(θ1,G)

)
,

delivers consistent parameter estimates (i.e., plim θ̂
GMM

1 = θ1) for every positive definite
weighting matrix Ω1, and is asymptotically normal.

Given that our estimator treats networks as the unit of observation, and under the
assumption of independence and identically distributed networks in our framework,
there is no need to adjust standard errors for cross-sectional dependence.

When utilizing solely the mean restrictions in the estimation process, the GMM
estimator from Proposition 3 simplifies to a closed-form generalized least squares
(GLS) estimator. This GLS estimator operates by using position-specific network-
averaged outcomes, and individual and peer characteristics as its inputs.

Corollary 1. Suppose that Assumption 1 holds, that βγ + δ 6= 0, and that the condition in
Theorem 1 is satisfied. Then θ̂

GMM

1 is numerically equivalent to the GLS estimator θ̂
GLS

1 :=(
X

ᵀ
Ω1X

)−1
X

ᵀ
Ω1y, where y := 1

S

∑
s ys and X := 1

S

∑
s

[
1 x̃s Gx̃s Gys

]
.

When the weighting matrix is the identity, GLS collapses to OLS on position-
specific, network-averaged data: θ̂

OLS

1 :=
(
X

ᵀ
X
)−1

X
ᵀ
y. Averaging at the position

level eliminates the sources of bias due to simultaneity and errors-in-variables, be-
cause both disturbances and measurement errors wash out within each position.
This result is striking, and continues to hold even in the absence of errors-in-variables.
It implies that, provided there is sufficient variation in characteristics across network
positions, the parameters of a linear-in-means model with contextual and endoge-
nous peer effects can be consistently estimated using OLS applied to the position-
specific averages.

We now introduce a GMM estimator that instead exploits the conditional covari-
ance restrictions in Equation (8). The associated conditional moment conditions are
E[V2,s(θ2,G) | G] = 0, where

V2,s(θ2,G) := (I− βG)ysx̃
ᵀ

s − (γI + δG)
(
x̃sx̃

ᵀ

s − σ2
uI
)
,

with ys := ys − 1
S

∑
s ys and x̃s := x̃s − 1

S

∑
s x̃s.

Proposition 4. Suppose that Assumptions 1 and 2 hold, that βγ + δ 6= 0, and that the
condition in Theorem 2 is satisfied. Let v2,s(θ2,G) := vec(V2,s(θ2,G)). Under standard
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regularity conditions (see Appendix A.6), the GMM estimator

θ̂
GMM

2 := arg min
θ2

(
1

S

∑
s

v2,s(θ2,G)

)ᵀ

Ω2

(
1

S

∑
s

v2,s(θ2,G)

)
,

delivers consistent parameter estimates (i.e., plim θ̂
GMM

2 = θ2) for every positive definite
weighting matrix Ω2, and is asymptotically normal.

Stochastic networks. We now consider the case where networks are stochastic. In
this setting, aggregating the moment conditions across network positions (mean re-
strictions) and pairs of network positions (covariance restrictions) is often desirable.
First, aggregation reduces the dimensionality of the system and mitigates noise in
the moments.17 Second, aggregation can improve comparability of moment condi-
tions derived from heterogeneous network structures.

Our approach follows Chamberlain (1987) and Newey (1993), who show that
conditional moment restrictions can be transformed into unconditional ones by suit-
able linear transformations of the original moments. In our context, we start from
the conditional moments

E[vm,s(θm,G) | G] = 0, m ∈ {1, 2},

which hold for each network G. LetNG denotes the number of individuals in G and
consider arbitrary aggregation matrices H1(G) and H2(G) of dimensions NG ×K1

and N2
G ×K2, respectively. By the law of iterated expectations,

E[Hm(G)ᵀvm,s(θm,G)] = E [Hm(G)ᵀE[vm,s(θm,G) | G]] = 0, m ∈ {1, 2},

so E[Hm(G)ᵀvm,s(θm,G)] = 0 provides valid unconditional moment conditions.
Aggregation occurs in two steps. Matrix H1(G) first aggregates mean restrictions

across positions within network G into K1 aggregated moments. These moments
are then aggregated across networks. Similarly, Matrix H2(G) first aggregates co-
variance restrictions across pairs of positions within network G into K2 aggregated
moments, which are then aggregated across networks. In general, Hm(G) may de-
pend on the interaction matrix G, but it must not depend on observed individual
characteristics, as this might introduce bias.18 In our Monte Carlo simulation in Sec-

17If a particular network position appears infrequently in the sample, the associated moments may
be very noisy, so aggregation across positions is recommended. Moreover, for large or irregular
networks, enumerating all positions can be computationally prohibitive.

18Chamberlain (1987) and Newey (1993) characterize optimal aggregation matrices, which de-
pend on the inverse covariance matrix of the moment conditions and the Jacobian of those moments.
In our setting, however, these objects are difficult to estimate reliably: they vary with the underlying
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tion 5.3, we use aggregation matrices that are simple functions of G.

1 2 3 4 5

Figure 2: A pair and a 3-node line

To illustrate, suppose that a researcher observes many networks with the two
structures depicted in Figure 2. In the population, the pair, denoted G1, occurs with
probability π, while the 3-node line, denoted G2, occurs with probability 1− π. The
researcher aggregates mean restrictions by individuals’ degree and covariance re-
strictions by the distance between pairs. To aggregate the mean restrictions within
and across structures, the researcher specifies the aggregation matrices

H1(G1) =

[
1 1

0 0

]ᵀ
, H1(G2) =

[
1 0 1

0 1 0

]ᵀ
.

The aggregated moment conditions are then given by

πH1(G1)ᵀE[v1,s(θm,G1) | G1] + (1− π)H1(G2)ᵀE[v1,s(θm,G2) | G2] = 0,

where the first and second rows collect mean restrictions for individuals with de-
grees one and two, respectively. This procedure computes two aggregated mo-
ments, one that sums the mean restrictions over all individuals in positions 1, 2, 3
and 5 (degree one) and another that sums the mean restrictions over all individuals
in position 4 (degree two).

Similarly, to aggregate the covariance restrictions, the researcher specifies

H2(G1) =

1 0 0 1

0 1 1 0

0 0 0 0


ᵀ

, H2(G2) =

1 0 0 0 1 0 0 0 1

0 1 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0 0


ᵀ

,

where the first, second, and third rows collect covariance restrictions for pairs at
distances zero, one, and two, respectively. The aggregated moment conditions are
then

πH2(G1)ᵀE[v2,s(θm,G1) | G1] + (1− π)H2(G2)ᵀE[v2,s(θm,G2) | G2] = 0.

This yields three aggregated moments: a first one that sums the variance restric-
tions over all individuals, a second one that sums covariance restrictions over pairs
of individuals in positions 12, 34 and 45 (distance one), and a third one that sums

network structure and are high dimensional, rendering their estimation impractical.
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covariance restrictions over pair of individuals in position 35 (distance two). Al-
though the two network structures differ in size and share no common positions,
the aggregation renders the restrictions comparable across graphs.

5.2 2SLS estimators

The parameters of interest can also be recovered using a 2SLS estimator. This ap-
proach is simple to implement and readily accommodates network fixed effects and
additional perfectly measured covariates. As discussed in Section 2, measurement
error renders the individual observed characteristic and average observed charac-
teristics of peers endogenous, while the average outcome of peers is endogenous
by construction. With three endogenous regressors

(
x̃, Gx̃, Gy

)
, we require at least

three instruments.
Define the modified 2SLS estimator[

α̂IV γ̂IV δ̂IV β̂IV
]ᵀ

:= (XᵀPzX)−1 XᵀPzy, (9)

where Zm is the instrument matrix and Pz := Zm (Zᵀ
mZm)−1 Zᵀ

m its projection matrix.
Using Pz accommodates overidentification (i.e., Zm may contain more than three
instruments). It is consistent provided the instruments in Zm are valid and XᵀPzX

has full rank.
We explore two approaches to constructing relevant and valid instruments from

within the model: using network-lagged characteristics and network features. These in-
struments’ relevance relies on interdependence between characteristics and links.
Alternatively, external information such as repeated measurements of the character-
istics can be used to generate supplementary instruments. These three categories of
instruments—network-lagged characteristics, network features, and external data—
can be adopted interchangeably, provided that the rank condition is met.

Network-lagged characteristics. If the network is sufficiently sparse, one poten-
tial source of instrumental variables is network-lagged characteristics. The relevance
and validity of these instruments rely on the correlation of individual characteristics
across the network, under the assumption that measurement error is uncorrelated.
When characteristics are correlated with links, the characteristics of peers at dis-
tances two or more can be used as instruments. This approach is reminiscent of
Griliches and Hausman (1986), who employ time-lagged observations in the con-
text of linear panel data models.

The interdependence of individual characteristics across the network can be har-
nessed through linear transformations of these characteristics. By restricting these
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transformations to a specific class, the dependency between the instrument and the
composite error term ηs = es − γus − δGsus in Equation (3) is neutralized.

Proposition 5. Suppose that Assumptions 1 and 2 hold. Then Wzx̃ is a valid instrument
if trace(Wz) = 0 and trace(WzG

ᵀ) = 0.

This proposition confirms the validity of using of network-lagged characteristics
as instruments. Let A(t) denote the binary matrix indicating whether a pair is at
distance t. For every distance t ≥ 2, the transformation Wz = A(t) yields valid
instruments, as we can see that diagonal elements of A(t) and A(t)Gᵀ are all equal to
zero.

Importantly, when regressors are measured with error, powers of the interaction
matrix G do not yield valid transformations of individual characteristics, in sharp
contrast to the error-free case (Bramoullé et al., 2009). Instruments based on higher-
order powers become invalid because paths with endpoints at distances zero and
one induce a correlation between the instrument and the error term. For instance,
C(G2x̃, η) = −σ2

u (γ trace(G2) + δ trace(G2Gᵀ)), which invalidates the instrument
for most network structures whenever γ 6= 0 or δ 6= 0.19

Network features. Another potential source of instruments comes from network
structure. First consider instruments that exploit first-order moments. For exam-
ple, if individuals with higher values of the underlying characteristic tend to have
more connections, then degree is a relevant and valid instrument: C(d, x̃) 6= 0 while
C(d, η) = 0. The same logic applies to other individual-level network statistics,
such as local clustering, whenever these are correlated with the true characteristic.
More generally, network structure can also generate instruments that work through
higher-order moments, even when the associated network statistic is uncorrelated
with the characteristic in levels. Consistent with this idea, we propose recentered,
model-based instruments reminiscent of Lewbel (1997).

Proposition 6. Suppose that Assumptions 1 and 2 hold. Let t = t(G) be a network charac-
teristic that varies at the individual level. Then instruments (i) t, (ii) (t−E[t])x̃, and (iii)
d(t− E[t])Gx̃ are valid. They are relevant if

(i) C(t, x) 6= 0 or C(t, Gx) 6= 0,

(ii) C(t, x2)− E[x]C(t, x) 6= 0 or C(t, xGx)− E[Gx]C(t, x) 6= 0,

(iii) C(t, d(Gx)2)− E[Gx]C(t, dGx) 6= 0 or C(t, dxGx)− E[x]C(t, dGx) 6= 0,

respectively.
19For an undirected network, for example, trace(G2) =

∑
i,j gijgji > 0.
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Proposition 6 highlights that a network statistic that is not a relevant instrument
in the traditional sense may still be useful if it shifts second moments of the individ-
ual or average peer characteristic. To illustrate, consider an iso-correlational envi-
ronment in which E[xi0 | G0] = 0, V(xi0 | G0) = σ2

x, and C(xi0 , xj0 | G0) = ρd(i0,j0)σ
2
x.

Thus, the mean of x is zero and its variance is constant across network positions,
while pairwise covariances depend only on network distance. It follows that t itself
is not a relevant instrument, since C(t, x) = C(t, Gx) = 0. However, as shown in
Online Appendix O.A.3, the first condition in (iii) of Proposition 6 yields

C(d(t− E[t])Gx̃,Gx̃) = C(t, (d− 1)c)ρ1σ
2
x + C(t, (d− 1)(1− c))ρ2σ

2
x, (10)

where ci0 =

∑
j0 6=k0∈Ni0

Aj0k0

di0 (di0−1)
is the local clustering coefficient.20 If ρ1, ρ2 6= 0, then

d(t−E[t])Gx̃ may be relevant whenever C(t, (d− 1)c) 6= 0 or C(t, (d− 1)(1− c)) 6= 0.
Because network statistics are often correlated in practice (Jackson & Rogers, 2007),
the relevancy conditions in Proposition 6 are likely satisfied in many applications.

5.3 Monte Carlo evidence

We study the finite-sample performance of our GMM and 2SLS estimators using
a Monte Carlo simulation. We consider a standard dyadic logit model of network
formation in which links are conditionally independent across dyads. Despite its
parsimony, this specification generates sufficient dependence between individual
characteristics and network links to permit reliable recovery of the parameters of
interest.

Setup. We consider a setup consisting of many small stochastic networks. In each
simulation draw, we generate 500 networks according to a dyadic model of link for-
mation. The number of individuals within every network is fixed at 20, a network
size commonly encountered in empirical applications. The entire simulation proce-
dure is repeated 500 times.

For each individual i in network s, we draw characteristics according to

xsi = ξs + ξsi,

where ξs ∼ N(10, 1) captures network-level heterogeneity and ξsi ∼ N(0, 2) captures
individual-level variation. This structure mimics selection into networks based on
observable characteristics.

20The local clustering coefficient measures how often an individual’s friends are also friend with
one another. It is the fraction of neighbor–pairs of i0 that are themselves linked (triangles involving
i0 over potential triangles).
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Links between individuals within a given network are formed through a directed
dyadic logit specification.21 Specifically, the log odds of a i having an incoming link
from j in network s is given by

log

(
Pr[asij = 1 | xsi, xsj ]
Pr[asij = 0 | xsi, xsj ]

)
= κ+ µxsj − ν|xsi − xsj|,

where κ is an intercept governing the overall propensity to form links, µ captures
the extent to which individuals with higher values of the characteristic attract more
connections, and ν controls the degree of homophily. Larger values of ν imply that
individuals with more dissimilar characteristics are less likely to form links, on av-
erage. In our simulations, we set (κ, µ, ν) = (−9, 1, 1).

Finally, we assume that measurement error for characteristics is drawn from a
normal distribution: i.e., usi ∼ N(0, 0.3). This implies a noise-to-signal ratio of 10%.

Moments and instruments. To illustrate the performance of our GMM approach,
we pool the moment restrictions from Propositions 3 and 4. Following the aggrega-
tion strategy in Section 5.1, we group conditional mean restrictions by degree into
bins of width three (i.e., 0–3, 3–6, 6–9, and 9+) and group conditional covariance
restrictions by network distance (0,1, and 2+). For the modified 2SLS estimator in
Equation (9), we employ seven instruments to address the endogeneity of three re-
gressors. In addition to average characteristics of individuals at network distance
two, which are valid by Proposition 5, we construct six further instruments moti-
vated by Proposition 6, based on degree and local clustering measures.22 Although
richer sets of moments and instruments could in principle be constructed, our objec-
tive is not to optimize their choice, but to assess the performance of the theoretically
motivated ones introduced above.

We contrast our estimates to those obtained from the naive, and biased, 2SLS es-
timator in Equation (2). This estimator is implemented by using only the average
characteristics of individuals at network distance two as instrument. Because this
specification employs a single instrument for three endogenous regressors, it is un-
deridentified and therefore gives rise to an asymptotic bias, as discussed in Section 3.

Results. Figure 3 presents Monte Carlo evidence comparing the GMM and IV-
based approaches. We set the model parameters to (α, β, γ, δ) = (0, 1, 0.5, 0.5). The
solid line corresponds to the naive 2SLS estimator, which is biased due to the pres-
ence of error-in-variables. The dotted line corresponds to the GMM estimator, while

21Logistic shocks are symmetric and reflect match-specific unobservables. If an individual is iso-
lated, we assign that individual a random peer.

22Specifically, we construct the following instruments: d, c, (d− E[d])x̃, (c− E[c])x̃, d(d− E[d])Gx̃,
and d(c− E[c])Gx̃, where d denotes an individual’s degree and c their local clustering coefficient.
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the dashed line corresponds to the modified 2SLS estimator.
The top panel reports estimates of the contextual peer effect δ. The naive 2SLS

estimator exhibits substantial upward bias, with an average estimate of 1.03 (s.d.
0.11), whereas the GMM and modified 2SLS the modified estimators are close to
unbiased, with sample averages of 0.51 (s.d. 0.14) and 0.48 (s.d. 0.19), respectively.
The bottom panel reports estimates of the endogenous peer effect β. In this case, the
naive 2SLS estimator is biased downward, with an average of 0.34 (s.d. 0.04), while
the GMM and modified 2SLS estimators yield average estimates of 0.50 (s.d. 0.04)
and 0.51 (s.d. 0.06), respectively.

Overall, these results indicate that asymptotic bias in estimated peer effects is a
first-order empirical concern. The naive estimate of the contextual peer effect is bi-
ased upward by more than 100%, while the naive estimate of the endogenous peer
effect is biased downward by more than 30%. By contrast, our GMM and modified
2SLS estimators perform well in finite samples. Although the modified 2SLS esti-
mator is more variable than the naive estimator—reflecting the treatment of three
regressors as endogenous—its precision remains broadly comparable. The GMM
estimator combines lower bias with higher precision.

6 Concluding remarks

This paper studies errors-in-variables in the linear-in-means model of social interac-
tions. We show that classical measurement error generally induces asymptotic bias
in naive 2SLS estimates of peer effects. While this bias is driven by the interplay be-
tween individual characteristics and network formation, the same mechanism also
offers an opportunity for identification and consistent estimation of the parameters
of interest. We accordingly propose GMM and 2SLS estimators that are straightfor-
ward to implement, and demonstrate their performance in a Monte Carlo simula-
tion.

Our analysis is a first step toward a general analysis of measurement error and
peer effects in networks. We see three natural directions for future research. First,
and given that the model is significantly overidentified, we believe that identification
may be robust to relaxing Assumption 2. It would be interesting to extend our anal-
ysis to setups where the variance-covariance structure of measurement errors may
depend on the network. Second, it would be interesting, and challenging, to extend
our analysis to settings where measurement error is non-classical. Recent research
by Balestra, Eugster, and Puljic (2023) has shown that when a binary characteristic
is misclassified, an expansion bias can even arise under random group formation.23

23This additional expansion bias arises from the correlation between the average peer characteristic
and the misclassification error in the individual characteristic.
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(a) Contextual peer effect δ

(b) Endogenous peer effect β

Figure 3: Sampling distributions of the GMM and 2SLS estimators

Notes: Each panel displays kernel density estimates of Monte Carlo sampling distributions based on
500 replications for the GMM estimator and two 2SLS estimators. The GMM estimator follows Propo-
sitions 3 and 4 and exploits both conditional mean and covariance restrictions; it is implemented us-
ing a two-step GMM procedure. The naive 2SLS estimator is implemented using Equation (2), while
the modified 2SLS estimator is implemented using Equation (9); the corresponding instrument set is
described in Footnote 22. The horizontal axis reports estimated parameter values and the vertical axis
reports density. Black vertical lines indicate the sample means of each estimator. For both peer-effects
parameters shown, the true parameter value equals 0.5 and is indicated by a thin red vertical line. In
each replication, outcomes are generated on 500 networks with 20 individuals each. Simulations are
conducted under parameter values (α, γ, δ, β, σ2

u, κ, µ, ν) = (0, 1, 0.5, 0.5, 0.3,−9, 1, 1), which imply
an average network degree of 8.22 and an average local clustering coefficient of 0.60. The implied
noise-to-signal ratio is 10%.
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We hypothesize that this additional bias will emerge in a network setting as well
and that under non-random assignment, the usual asymptotic bias will reappear
with qualitatively similar features to the bias studied here. Third, an exploration
of the interplay between mismeasured characteristics and mismeasured links could
contribute to a deeper and fuller understanding of the impact of measurement error
on peer effect estimates. For instance, if homophily is correlated with friendship in-
tensity, surveys that only sample a few best friends might deliver biased estimates
of homophily. This, in turn, may interact with asymptotic bias due to mismeasured
characteristics.
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Appendix
Measurement Error and Peer Effects in Networks

A Proofs for results in the main text

A.1 Proof of Lemma 1

By the FWL theorem, we can partial out the intercept and work with demeaned
variables. The resulting naive 2SLS estimator for (β, γ, δ) is[

γ̂IV δ̂IV β̂IV
]ᵀ

= (Zᵀ
wXw)−1 Zᵀ

wyw,

where Xw :=
[
x̃w (Gx̃)w (Gy)w

]
, Zw :=

[
x̃w (Gx̃)w zw

]
, and, for any N × 1

vector a, the demeaned version is aw := (IN − 1
N

JN)a, with IN the N × N identity
and JN the N ×N matrix of ones. In this representation, all variables are expressed
as deviations from their sample means.

Using the properties of probability limits, we have that

plim
[
γ̂IV δ̂IV β̂IV

]ᵀ
=

(
plim

1

N
Zᵀ
wXw

)−1(
plim

1

N
Zᵀ
wyw

)
,

and under Assumptions 1 and 2, we obtain

plim
1

N
Zᵀ
wXw = plim

1

N

 xᵀ
wxw xᵀ

w(Gx)w xᵀ
w(Gy)w

(Gx)ᵀwxw (Gx)ᵀw(Gx)w (Gx)ᵀw(Gy)w

zᵀ
wxw zᵀ

w(Gx)w zᵀ
w(Gy)w



+ plim
1

N

 uᵀ
wuw uᵀ

w(Gu)w 0

(Gu)ᵀwuw (Gu)ᵀw(Gu)w 0

0 0 0

 ,

plim
1

N
Zᵀ
wyw = plim

1

N

 xᵀ
wxw xᵀ

w(Gx)w xᵀ
w(Gy)w

(Gx)ᵀwxw (Gx)ᵀw(Gx)w (Gx)ᵀw(Gy)w

zᵀ
wxw zᵀ

w(Gx)w zᵀ
w(Gy)w


γδ
β

 ,
where the second equality follows by substituting Equation (1a). Evaluating these
probability limits gives the desired result.
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A.2 Proof of Proposition 1

The general case. Define K as the Schur complement of s22 in S + Σ, i.e., K :=

S11 + Σ11 − 1
s22

s12s21. Using the formula for the inverse of a block matrix, we obtain

(S + Σ)−1 =

[
K−1 − 1

s22
K−1s12

− 1
s22

s21K
1
s22

+ 1
s222

s21K
−1s12

]
,

such that for M := (S + Σ)−1S, we have

M =

[
K−1 − 1

s22
K−1s12

− 1
s22

s21K
1
s22

+ 1
s222

s21K
−1s12

][
S11 s12

s21 s22

]
=

[
I−K−1Σ11 0
1
s22

s21K
−1Σ11 1

]
.

Using the Sherman-Morrison formula, we obtain

K−1 = (S11 + Σ11)−1 +
1

s22 − s21(S11 + Σ11)−1s12

(S11 + Σ11)−1s12s21(S11 + Σ11)−1

= (S11 + Σ11)−1 +
1

s22 −ϕᵀ
zs12

(S11 + Σ11)−1s12ϕ
ᵀ
z ,

where we used ϕᵀ
z := s21(S11 + Σ11)−1. This vector can be interpreted as the proba-

bility limit of the coefficients on x̃ and Gx̃ obtained from regressing z on a constant,
x̃, and Gx̃. Therefore,

1

s22

s21K
−1Σ11 =

1

s22 −ϕᵀ
zs12

ϕᵀ
zΣ11

=
1

s22 −ϕᵀ
zs12

σ2
u

[
ϕz,x̃ h0ϕz,Gx̃

]
.

If C(z, x) = C(z,Gx) = 0, then s21 = 0, and hence ϕz,x̃ = ϕz,Gx̃ = 0.

Independent characteristics and links. Under independence between character-
istics and links, we have s21 = 0, so that K = S11 + Σ11. In addition, S11 =[
V(x) 0

0 V(Gx)

]
. We therefore obtain

I−K−1Σ11 = I−

[
V(x) + σ2

u 0

0 V(Gx) + h0σ
2
u

]−1 [
σ2
u 0

0 h0σ
2
u

]

= I−

[
σ2
u

V(x)+σ2
u

0

0 h0σ2
u

V(Gx)+h0σ2
u

]

=

[
V(x)

V(x)+σ2
u

0

0 V(Gx)
V(Gx)+h0σ2

u

]
.
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Similarly, s21 = 0 implies 1
s22

s21K
−1Σ11 = 0.

A.3 Proof of Theorem 1

Consider two sets of parameters θ1,θ
′
1 leading to the conditional mean restrictions

E[y0 | G0] = (I− βG0)−1[α1 + (γI + δG0)m],

E[y0 | G0] = (I− β′G0)−1[α′1 + (γ′I + δ′G0)m],

or equivalently,

(I− βG0)−1[α1 + (γI + δG0)m] = (I− β′G0)−1[α′1 + (γ′I + δ′G0)m].

Left-multiplying both sides by (I− βG0)(I− β′G0) yields

(I− β′G0)[α1 + (γI + δG0)m] = (I− βG0)[α′1 + (γ′I + δ′G0)m],

where we made use of the push-through identity G0(I− βG0)−1 = (I− βG0)−1G0.
Rearranging gives a11 + a2m + a3G0m + a4G

2
0m = 0, with coefficients

a1 = α(1− β′)− α′(1− β), a2 = γ − γ′,

a3 = −(β′γ − δ) + βγ′ − δ′, a4 = −β′δ + βδ′.

(=⇒) Suppose that 1, m, G0m, G2
0m are linearly independent. Using the fact

that a2 = a3 = a4 = 0, from the proof of Proposition 1 in Bramoullé et al. (2009), it
follows that (β, γ, δ) = (β′, γ′, δ′) if βγ+δ 6= 0. From a1 = 0 it then follows thatα = α′.
(⇐=) Suppose 1, m, G0m, G2

0m are linearly dependent. This implies that at least
one of the coefficients a1, a2, a3, a4 is nonzero. One can confirm that (α, β, γ, δ) =

(2a1, 0, 2a2, 2a3) and (α′, β′, γ′, δ′) = (a1, 0, a2, a3) is a feasible pairs of solutions.

A.4 Proof of Theorem 2

Consider two sets of parameters θ2,θ
′
2 leading to the conditional covariance restric-

tions

C(y0, x̃0 | G0) = (I− βG0)−1(γI + δG0)(C− σ2
uI),

C(y0, x̃0 | G0) = (I− β′G0)−1(γ′I + δ′G0)(C− σ2
u
′
I),

or equivalently,

(I− βG0)−1(γI + δG0)(C− σ2
uI) = (I− β′G0)−1(γ′I + δ′G0)(C− σ2

u
′
I).
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Left-multiplying both sides by (I− βG0)(I− β′G0) gives

(I− β′G0)(γI + δG0)(C− σ2
uI) = (I− βG0)(γ′I + δ′G0)(C− σ2

u
′
I).

Rearranging gives a1I + a2G0 + a3G
2
0 + a4C + a5G0C + a6G

2
0C = 0, with coefficients

a1 = −γσ2
u + γ′σ2

u
′
, a2 = (β′γ − δ)σ2

u − (βγ′ − δ′)σ2
u
′
,

a3 = β′δ σ2
u − βδ′ σ2

u
′
, a4 = γ − γ′,

a5 = −(β′γ − δ) + βγ′ − δ′, a6 = −β′δ + βδ′.

(=⇒) Suppose that I, G0, G2
0, C, G0C, G2

0C are linearly independent. Using
the fact that a4 = a5 = a6 = 0, from the proof of Proposition 1 in Bramoullé et al.
(2009), it follows that (β, γ, δ) = (β′, γ′, δ′) if βγ + δ 6= 0. From a1 = 0 it then follows
that σ2

u = σ2
u
′. (⇐=) Suppose I, G0, G2

0, C, G0C, G2
0C are linearly dependent. This

implies that at least one of the coefficients a1, a2, a3, a4, a5, a6 is nonzero. One can
confirm that (β, γ, δ, σ2

u) = (0, 2a4, 2a5, 0) and (β′, γ′, δ′, σ2
u
′
) = (0, a4, a5, 0) is a feasible

pair of solutions.

A.5 Proof of Proposition 2

We prove Proposition 2 through a series of lemmas. Let T(m̌) := [1, m̌, Ǧ0m̌, Ǧ2
0m̌]

for m̌ ∈ CŇ0 .

Lemma A.1. If Ǧ0 has at least 4 distinct eigenvalues, there exists an m̌∗ ∈ CŇ0 such that
rank T(m̌∗) = 4.

Proof. Consider 4 distinct eigenvalues λ1, λ2, λ3, λ4 of Ǧ0, and denote their corre-
sponding eigenvectors by v1,v2,v3,v4 ∈ CŇ0 . Since Ǧ01 = 1, λ1 = 1 is an eigenvalue
with eigenvector 1. Because the eigenvalues are pairwise distinct, their correspond-
ing eigenvectors are linearly independent over C.

Define V := span(v2,v3,v4) and pick m̌∗ = v2 +v3 +v4 ∈ V . Because (v2,v3,v4)

forms a basis of V , we can rewrite the Ň0 × 3 matrix [m̌∗, Ǧ0m̌
∗, Ǧ2

0m̌
∗] in terms of

this basis. In coordinates relative to (v2,v3,v4) we have:24

V :=

1 λ2 λ2
2

1 λ3 λ2
3

1 λ4 λ2
4

 ,
which is a Vandermonde matrix with det(V ) = (λ3 − λ2)(λ4 − λ2)(λ4 − λ3) 6= 0,
since the eigenvalues are pairwise distinct. Therefore m̌∗, Ǧ0m̌

∗, Ǧ2
0m̌
∗ are linearly

24Note that Ǧ0m̌
∗ = λ2v2 + λ3v3 + λ4v4 and Ǧ2

0m̌
∗ = λ22v2 + λ23v3 + λ24v4
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independent over C and span(m̌∗, Ǧ0m̌
∗, Ǧ2

0m̌
∗) = V . Since v1 = 1 /∈ V we have

that rank T(m̌∗) = 4.

Lemma A.2. If there exists at least one m̌∗ ∈ CŇ0 for which rank T(m̌∗) = 4 then the set
of m̌ ∈ RŇ0 for which rank T(m̌) < 4 has Lebesgue measure zero.

Proof. Let ∆1(m̌), . . . ,∆K(m̌) be all 4 × 4 minors of T(m̌).25 Then rank T(m̌) < 4 if
and only if ∆1(m̌) = · · · = ∆K(m̌) = 0. Define p(m̌) :=

∑K
k=1 |∆k(m̌)|2, which is

a real polynomial in the real and imaginary parts of m̌.26 Identification fails for the
set of m̌’s for which this polynomial is zero.

Since there exists an m̌∗ ∈ CŇ0 such that rank T(m̌∗) = 4, we have p(m̌∗) > 0.
Hence p is a nontrivial (i.e., nonzero) polynomial. It is well known that the zero set
of a nonzero real polynomial has Lebesgue measure zero. Viewing CŇ0 as R2Ň0 , this
implies that the zero set of p has Lebesgue measure zero in R2Ň0 . Its intersection
with RŇ0 therefore also has Lebesgue measure zero.

A.6 Regularity conditions for Proposition 3 and 4

Following Cameron and Trivedi (2005, p. 172–174), we state the main regularity con-
ditions ensuring consistency and asymptotic normality of the GMM estimators.27

Let m ∈ {1, 2} index the two sets of moments, corresponding respectively to the
mean and covariance restrictions, and let θ∗m denote the corresponding true param-
eter value. For each m, assume:

(i) The model is correctly specified, i.e., E[vm,s(θ
∗
m,G) | G] = 0,

(ii) The model is identified, i.e., the conditions in Theorem 1 (for m = 1) or Theo-
rem 2 (for m = 2) hold,

(iii) The Jacobian E[∇θmvm,s(θ
∗
m,G) | G] exists and is finite with full column rank,

(iv) The moments are asymptotically normally distributed, i.e.,

1√
S

∑
s

vm,s(θ
∗
m,G)→d N(0,Ψm(θ∗m)),

where Ψm(θ∗m) := E[vm,s(θ
∗
m,G)vm,s(θ

∗
m,G)ᵀ | G],

(v) The parameter space Θm is compact and θ∗m ∈ int(Θm).
25That is, the determinants of every combination of 4 rows of T(m̌).
26We let | · |2 denote the squared modulus of a complex number. For instance, for a + ib ∈ C,

|a+ ib|2 = a2 + b2.
27Additional standard regularity conditions guarantee a uniform law of large numbers for the sam-

ple moments and their Jacobian.
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A.7 Proof of Corollary 1

The GMM estimate in Proposition 3 is numerically equivalent to the solution of the
first order condition(

1

S

∑
s

∇θ1v1,s(θ1,G)

)ᵀ

Ω1

(
1

S

∑
s

v1,s(θ1,G)

)
= 0,

where v1,s(θ1,G) = ys−Xsθ1 and∇θ1v1,s(θ1,G) = −Xs. By rearranging, it follows
directly that θ̂

GMM

1 =
(
X

ᵀ
Ω1X

)−1
X

ᵀ
Ω1y.

A.8 Proof of Proposition 5

A valid instrument satisfies C(Wzx̃, η) = C(Wzx̃, e)−γC(Wzx̃, u)−δC(Wzx̃, Gu) = 0.
Under conditional mean independence of the disturbance and Assumptions 1 and
2, it holds that

C(Wzx̃, e) = 0,

C(Wzx̃, u) = E(uᵀWᵀ
zu) = σ2

utrace(Wz),

C(Wzx̃, Gu) = E(uᵀWᵀ
zGu) = σ2

utrace(WzG
ᵀ).

A.9 Proof of Proposition 6

By the mean independence condition of disturbances and by Assumption 1,C(t, η) =

0 and t is a valid instrument. Next, we focus on the instruments (t − E[t])x̃ and
d(t− E[t])Gx̃.

Validity. We first show the validity of the proposed instruments. A valid instru-
ment z should satisfy C(z, η) = C(z, e − γu − δGu) = 0. Consider the instrument
z = (t− E[t])x̃. We have that

C(z, e) = E[zE[e | z]] = 0,

C(z, u) = E[(t− E[t])(x+ u)u] = E[(t− E[t])E[u2 | t]] = 0,

C(z,Gu) = E[(t− E[t])(x+ u)Gu] = 0.

Consider the instrument z = d(t− E[t])Gx̃. We have that

C(z, e) = E[zE[e | z]] = 0,

C(z, u) = E[d(t− E[t])(Gx+Gu)u] = 0,

C(z,Gu) = E[d(t− E[t])(Gx+Gu)Gu] = E[d(t− E[t])E[(Gu)2 | t, d]] = 0,

where the last equality follows from the fact that dE[(Gu)2 | t, d] = σ2
u.
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Relevance. We now show the relevance of the proposed instruments. Instrument
z is relevant if it satisfies C(z, x̃) 6= 0 or C(z,Gx̃) 6= 0. Consider the instrument
z = (t− E[t])x̃. We have that

C(z, x̃) = C(tx̃, x̃)− E[t]V(x̃)

= E[tx̃2]− E[tx̃]E[x̃]− E[t]E[x̃2] + E[t]E[x̃]2

= C(t, x̃2)− E[x̃]C(t, x̃)

= C(t, x2)− E[x]C(t, x),

and

C(z,Gx̃) = C(tx̃, Gx̃)− E[t]C(Gx,Gx̃)

= E[tx̃Gx̃]− E[tx̃]E[Gx̃]− E[t]E[x̃Gx̃] + E[t]E[x̃]E[Gx̃]

= C(t, x̃Gx̃)− E[Gx̃]C(t, x̃)

= C(t, xGx)− E[Gx]C(t, x).

Consider the instrument z = d(t− E[t])Gx̃. We have that

C(z, x̃) = C(dtGx̃, x̃)− E[t]C(dGx̃, x̃)

= C(t, dx̃Gx̃)− E[x̃]C(t, dGx̃)

= C(t, dxGx)− E[x]C(t, dGx),

and

C(z,Gx̃) = C(dtGx̃,Gx̃)− E[t]C(dGx̃,Gx̃)

= C(t, d(Gx̃)2)− E[Gx̃]C(t, dGx̃)

= C(t, d(Gx)2)− E[Gx]C(t, dGx).
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B Extensions

B.1 Network fixed effects

We consider an extended specification of the model that allows for network-specific
fixed effects,

ys = αs1 + γxs + δGsxs + βGsys + es, (11a)

x̃s = xs + us, (11b)

with E(es | αs,xs,Gs,us) = 0. The inclusion of the fixed effects αs requires updated
versions of Assumptions 1 and 2.

Assumption B.1. The measurement errors satisfy:

E(usi | αs,xs,Gs, es) = 0.

Assumption B.2. The measurement errors satisfy:

E
(
u2
si | αs,xs,Gs, es

)
= σ2

u, E(usiusj | αs,xs,Gs, es) = 0,∀i 6= j.

Identification. We now state analogues of Theorems 1 and 2 for the model with
network fixed effects. Akin to Bramoullé et al. (2009), the inclusion of network-
specific fixed effects renders the identification conditions more demanding.

Theorem B.1. Suppose that Assumption B.1 holds and that βγ + δ 6= 0. The parameters
β, γ, δ are identified from conditional mean restrictions if the vectors m, G0m, G2

0m, G3
0m

are linearly independent.

Theorem B.2. Suppose that Assumptions B.1 and B.2 hold and that βγ + δ 6= 0. The
parameters β, γ, δ, σ2

u are identified from conditional covariance restrictions if the matrices
I, G0, G2

0, G3
0, C, G0C, G2

0C, G3
0C are linearly independent.

Estimation. 2SLS estimation proceeds analogously to the baseline specification
without network-specific fixed effects. By contrast, GMM estimation with many
network-specific fixed effects may be burdensome in practice. A simple alternative
is to estimate the model using network-demeaned variables. This approach reduces
the number of parameters entering the (nonlinear) objective functions and can sub-
stantially facilitate estimation.

Define the network-demeaning matrix Ps := INs − 1
Ns

JNs . Left-multiplying both
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sides of Equation (11a) by Ps yields the demeaned model

Psys = Ps [(γI + δGs)xs + βGsys + es] ,

which no longer contains the network-specific fixed effect.
From this demeaned model, under Assumption B.1, we obtain the conditional

mean restriction

P0(I− βG0)E[y0 | G0] = P0(γI + δG0)E[x̃0 | G0],

and hence the sample analogue for observation s

v1,s(θ1,G) := Ps [(I− βG)ys − (γI + δG)x̃s] .

Likewise, under Assumptions B.1 and B.2, we obtain the conditional covariance re-
striction

P0(I− βG0)C(y0, x̃0 | G0)Pᵀ
0 = P0(γI + δG0)(V(x̃0 | G0)− σ2

uI)Pᵀ
0,

and hence the sample analogue for observation s

V2,s(θ2,G) := Ps

[
(I− βG)ysx̃

ᵀ

s − (γI + δG)(x̃sx̃
ᵀ

s − σ2
uI)
]

Pᵀ
s .

Together, these alternative restrictions provide a potentially large system of equa-
tions in only four unknowns (i.e., β, γ, δ, σ2

u). GMM estimation then proceeds along
the lines of Propositions 3 and 4 in Section 5.1.

As a final remark, researchers who wish to include a larger set of perfectly mea-
sured covariates can follow Erickson and Whited (2002), who propose a computa-
tionally convenient two-step procedure. In the first step, one partials out fixed effects
and the additional perfectly measured covariates via auxiliary OLS regressions. In
the second step, one applies GMM to the resulting residualised model.28

B.2 Measurement error in outcomes

We now study an extended specification of the model that allows for mismeasured
outcomes: i.e., the researcher observes ỹs = ys + vs. Together with Equations (1a)

28This approach generalizes the demeaning procedure outlined above. In this setting, Ps can be
interpreted as the annihilator matrix from the first stage.
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and (1b), this yields

ỹs = α1 + βGsỹs + γx̃s + δGsx̃s + es − γus − δGsus + vs − βGsvs︸ ︷︷ ︸
:=ζs

.

The inclusion of measurement error in outcomes requires us to put structure on this
additional source of measurement error, in the spirit of Assumptions 1 and 2.

Assumption B.3. The measurement errors on outcomes satisfy:

E(vsi | xs,Gs, es) = 0.

Assumption B.4.

E(usivsi | xs,Gs, es) = 0, E(usivsj | xs,Gs, es) = 0,∀i 6= j.

Identification. We now state the extensions of Theorems 1 and 2. Under Assump-
tions B.3 and B.4, the same conditions for identification hold as in our baseline setup.

Theorem B.3. Suppose that Assumptions 1 and B.3 hold and that βγ+ δ 6= 0. The param-
eters α, β, γ, δ are identified from conditional mean restrictions if and only if the vectors 1,
m, G0m, G2

0m are linearly independent.

Theorem B.4. Suppose that Assumptions 1, 2, B.3, and B.4 hold and that βγ+ δ 6= 0. The
parameters β, γ, δ, σ2

u are identified from conditional covariance restrictions if and only if
the matrices I, G0, G2

0, C, G0C, G2
0C are linearly independent.

Estimation. Under Assumptions 1 and B.3, the GMM estimator based on the mean
restrictions coincides with the estimator in Proposition 3. Under Assumptions 1, 2,
B.3, and B.4, the GMM estimator based on the covariance restrictions coincides with
the estimator in Proposition 4.

Regarding 2SLS estimation, we obtain the following result, which generalizes
Proposition 5.

Proposition B.1. Suppose that Assumptions 1, 2, B.3, and B.4 hold. Then Wzx̃ is a valid
instrument if trace(Wz) = 0 and trace(WzG

ᵀ) = 0.
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Online Appendix
Measurement Error and Peer Effects in Networks

O.A Additional results

O.A.1 Expansion bias without endogenous peer effects

Consider the model without endogenous peer effect,

ys = α1 + γxs + δGsxs + es,

x̃s = xs + us,

whose parameters are estimated using the OLS estimator[
γ̂OLS δ̂OLS

]ᵀ
:=
([

x̃w (Gx̃)w

]ᵀ [
x̃w (Gx̃)w

])−1 [
x̃w (Gx̃)w

]ᵀ
yw,

where, for any N × 1 vector a, the demeaned version is aw := (IN − 1
N

JN)a, with IN

the N ×N identity and JN the N ×N matrix of ones.
Similar to Lemma 1, under Assumptions 1 and 2 we have that

plim
[
γ̂OLS

δ̂OLS

]
= (S + Σ)−1S

[
γ

δ

]
,

where

S :=

[
V(x) C(x,Gx)

C(Gx, x) V(Gx)

]
, Σ :=

[
σ2
u 0

0 h0σ
2
u

]
.

Therefore, it holds that

plim
[
γ̂OLS

δ̂OLS

]
=

1

DOLS

[
V(Gx) + h0σ

2
u −C(Gx, x)

−C(x,Gx) V(x) + σ2
u

][
V(x) C(x,Gx)

C(Gx, x) V(Gx)

][
γ

δ

]

=
1

DOLS

[
det(S) + h0σ

2
uV(x) h0σ

2
uC(x,Gx)

σ2
uC(x,Gx) det(S) + σ2

uV(Gx)

][
γ

δ

]
,

where DOLS := det(S) + h0σ
2
uV(x) + σ2

uV(Gx) + h0σ
4
u. Matrix multiplication yields

Equation (5). Observe that det(S) = V(x)V(Gx)− C(x,Gx)2 ≥ 0.
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O.A.2 Expansion bias without contextual peer effects

Consider the model without contextual peer effect,

ys = α1 + γxs + βGsys + es,

x̃s = xs + us,

whose parameters are estimated using the IV estimator[
γ̂IV β̂IV

]ᵀ
:=
([

x̃w (Gx̃)w

]ᵀ [
x̃w (Gy)w

])−1 [
x̃w (Gx̃)w

]ᵀ
yw,

where, for any N × 1 vector a, the demeaned version is aw := (IN − 1
N

JN)a, with IN

the N ×N identity and JN the N ×N matrix of ones.
Similar to Lemma 1, under Assumptions 1 and 2 we have that

plim
[
γ̂IV

β̂IV

]
= (S + Σ)−1S

[
γ

β

]
,

where

S :=

[
V(x) C(x,Gy)

C(Gx, x) C(Gx,Gy)

]
, Σ :=

[
σ2
u 0

0 0

]
.

Therefore, it holds that

plim
[
γ̂IV

β̂IV

]
=

1

DIV

[
C(Gx,Gy) −C(x,Gy)

−C(Gx, x) V(x) + σ2
u

][
V(x) C(x,Gy)

C(Gx, x) C(Gx,Gy)

][
γ

β

]

=
1

DIV

[
V(x)C(Gx,Gy)− C(Gx, x)C(x,Gy) 0

σ2
uC(Gx, x) DIV

][
γ

β

]
,

whereDIV = (V(x)+σ2
u)C(Gx,Gy)−C(Gx, x)C(x,Gy). Matrix multiplication yields

Equation (6).

O.A.3 Proof of Equation (10)

The conditionE[xi0 | G0] = 0 implies thatC(t, x) = C(t, Gx) = E[Gx] = 0. Therefore,
by Proposition 6, we have that C(d(t− E[t])Gx̃,Gx̃) = C(t, d(Gx)2). Observe that

C(t, d(Gx)2) =

(
plim

1

N

∑
i

tidi
∑
j,k

gijgikxjxk

)

−

(
plim

1

N

∑
i

ti

)(
plim

1

N

∑
i

di
∑
j,k

gijgikxjxk

)
,
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where, due to V(xi0 | G0) = σ2
x and C(xi0 , xj0 | G0) = ρd(i0,j0)σ

2
x,

plim
1

N

∑
i

tidi
∑
j,k

gijgikxjxk =
1

N0

∑
i0

ti0di0

(
1

di0
+

(di0 − 1)ci0
di0

ρ1 +
(di0 − 1)(1− ci0)

di0
ρ2

)
σ2
x,

plim
1

N

∑
i

di
∑
j,k

gijgikxjxk =
1

N0

∑
i0

di0

(
1

di0
+

(di0 − 1)ci0
di0

ρ1 +
(di0 − 1)(1− ci0)

di0
ρ2

)
σ2
x.

Combined with plim 1
N

∑
i ti = 1

N0

∑
i0
ti0 , collecting terms yields Equation (10).
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O.B Omitted proofs

O.B.1 Network fixed effects

O.B.1.1 Proof of Theorem B.1

Left-multiplying both sides of the conditional mean restrictions by the local differ-
encing matrix (I−G0) gives

E[(I−G0)y0 | G0] = (I− βG0)−1(I−G0)(γI + δG0)m,

E[(I−G0)y0 | G0] = (I− β′G0)−1(I−G0)(γ′I + δ′G0)m,

where we made use of the push-through identity. Equivalently,

(I− βG0)−1(I−G0)(γI + δG0)m = (I− β′G0)−1(I−G0)(γ′I + δ′G0)m.

Left-multiplying both sides by (I− βG0)(I− β′G0) yields

(I− β′G0)(I−G0)(γI + δG0)m = (I− βG0)(I−G0)(γ′I + δ′G0)m.

Rearranging gives a1m + a2G0m + a3G
2
0m + a4G

3
0m = 0, with coefficients

a1 = γ − γ′, a2 = −(1 + β′)γ + δ + (1 + β)γ′ − δ′,

a3 = β′γ − δ(1 + β′)− βγ′ + δ′(1 + β), a4 = β′δ − βδ′.

(=⇒) Suppose that m, G0m, G2
0m, G3

0m are linearly independent. Using the fact
that a1 = a2 = a4 = 0, from the proof of Proposition 1 in Bramoullé et al. (2009), it
follows that (β, γ, δ) = (β′, γ′, δ′) if βγ + δ 6= 0.

O.B.1.2 Proof of Theorem B.2

Left-multiplying both sides of the conditional covariance restrictions by the local
differencing matrix (I−G0) gives

C((I−G0)y0, x̃0 | G0) = (I− βG0)−1(I−G0)(γI + δG0)(C− σ2
uI),

C((I−G0)y0, x̃0 | G0) = (I− β′G0)−1(I−G0)(γ′I + δ′G0)(C− σ2
u
′
I),

where we made use of the push-through identity. Equivalently,

(I−βG0)−1(I−G0)(γI+δG0)(C−σ2
uI) = (I−β′G0)−1(I−G0)(γ′I+δ′G0)(C−σ2

u
′
I).
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Left-multiplying both sides by (I− βG0)(I− β′G0) gives

(I− β′G0)(I−G0)(γI + δG0)(C− σ2
uI) = (I− βG0)(I−G0)(γ′I + δ′G0)(C− σ2

u
′
I).

Rearranging gives a1I + a2G0 + a3G
2
0 + a4G

3
0 + a5C + a6G0C + a7G

2
0C + a8G

3
0C = 0,

with coefficients

a1 = −σ2
uγ + σ2

u
′
γ′,

a2 = −σ2
u(δ − γ(1 + β′)) + σ2

u
′
(δ′ − γ′(1 + β)),

a3 = −σ2
u(γβ

′ − (1 + β′)δ) + σ2
u
′
(γ′β − (1 + β)δ′),

a4 = −σ2
uβ
′δ + σ2

u
′
βδ′,

a5 = γ − γ′,

a6 = δ − γ(1 + β′)− δ′ + γ′(1 + β),

a7 = γβ′ − (1 + β′)δ − γ′β + (1 + β)δ′,

a8 = β′δ − βδ′.

(=⇒) Suppose that I, G0, G2
0, G3

0, C, G0C, G2
0C, G3

0C are linearly independent.
Using the fact that a5 = a6 = a8 = 0, from the proof of Proposition 1 in Bramoullé
et al. (2009), it follows that (β, γ, δ) = (β′, γ′, δ′) if βγ + δ 6= 0. From a1 = 0 it then
follows that σ2

u = σ2
u
′.

O.B.2 Mismeasured outcome variable

O.B.2.1 Proof of Theorem B.3

Under Assumption B.3, we have

E[ỹ0 | G0] = E[y0 | G0] + E[v0 | G0] = E[y0 | G0],

since E[v0 | G0] = 0 by Assumption B.3. Identification then proceeds as in Theo-
rem 1, based on the conditional mean restriction

E[ỹ0 | G0] = (I− βG0)−1
[
α1 + (γI + δG0)m

]
.

O.B.2.2 Proof of Theorem B.4

Under Assumptions B.3 and B.4, we have

C(ỹ0, x̃0 | G0) = C(y0, x̃0 | G0) + C(v0, x̃0 | G0) = C(y0, x̃0 | G0),
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since C(v0, x̃0 | G0) = 0 by Assumption B.4. Identification then proceeds as in
Theorem 2, based on the conditional covariance restriction

C(ỹ0, x̃0 | G0) = (I− βG0)−1(γI + δG0)(C− σ2
uI).

O.B.2.3 Proof of Proposition B.1

The instrument Wzx̃ is valid when

C(Wzx̃, ζ) = C(Wzx̃, e− γu− δGu+ v − βGv) = 0.

From the proof of Proposition 5, we have already established that, under Assump-
tions 1 and 2, C(Wzx̃, e) = C(Wzx̃, u) = C(Wzx̃, Gu) = 0. Assumptions B.3 and B.4
additionally imply C(Wzx̃, v) = C(Wzx̃, Gv) = 0. It follows that C(Wzx̃, ζ) = 0.
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